论文标题

随机双域方程与Fitzhugh-Nagumo运输的全球强度良好

Global Strong Well-Posedness of the stochastic bidomain equations with FitzHugh-Nagumo transport

论文作者

Hieber, Matthias, Hussein, Amru, Saal, Martin

论文摘要

考虑使用Fitzhugh-Nagumo运输的电生理学的双域方程,受当前噪声的约束,即受到圆柱状维纳过程建模的随机强迫。结果表明,这组方程在临界空间的设置中接受了独特的全局,强烈的路径解决方案。该证明是基于随机和确定性最大规律性的结合方法。另外,从确定性演化方程式外推空间的方法转移到随机设置。

Consider the bidomain equations from electrophysiology with FitzHugh--Nagumo transport subject to current noise, i.e., subject to stochastic forcing modeled by a cylindrical Wiener process. It is shown that this set of equations admits a unique global, strong pathwise solution within the setting of critical spaces. The proof is based on combining methods from stochastic and deterministic maximal regularity. In addition, the method of extrapolation spaces from deterministic evolution equations is transferred to the stochastic setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源