论文标题

拓扑e_n-operads的Koszul二元性

Koszul duality for topological E_n-operads

论文作者

Ching, Michael, Salvatore, Paolo

论文摘要

我们表明,光谱中e_n-operad的koszul双重偶性是o(n)等效等同于其n折的悬浮。为此,我们引入了一个新的O(n) - 欧(eclidean spaces r_n),barycentric Operad,它是纤维上的单纯形,并具有同构形态为结构地图。我们还介绍了其限制的小n盘D_N的子上映,这是E_N-OPERAD。 The duality is realized by an unstable explicit S-duality pairing (F_n)_+ \smash BD_n \to S_n, where B is the bar-cooperad construction, F_n is the Fulton-MacPherson E_n-operad, and the dualizing object S_n is an operad of spheres that are one-point compactifications of star-shaped neighbourhoods in R_n.我们还将Operad包含映射e_n \ e_ {n+m}的Koszul双重识别为(N+M) - 不稳定的Operad Map e_ {n+m} \ toσ^m e_n的(N+M) - 折叠desuspension。

We show that the Koszul dual of an E_n-operad in spectra is O(n)-equivariantly equivalent to its n-fold desuspension. To this purpose we introduce a new O(n)-operad of Euclidean spaces R_n, the barycentric operad, that is fibred over simplexes and has homeomorphisms as structure maps; we also introduce its sub-operad of restricted little n-discs D_n, that is an E_n-operad. The duality is realized by an unstable explicit S-duality pairing (F_n)_+ \smash BD_n \to S_n, where B is the bar-cooperad construction, F_n is the Fulton-MacPherson E_n-operad, and the dualizing object S_n is an operad of spheres that are one-point compactifications of star-shaped neighbourhoods in R_n. We also identify the Koszul dual of the operad inclusion map E_n \to E_{n+m} as the (n+m)-fold desuspension of an unstable operad map E_{n+m} \to Σ^m E_n defined by May.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源