论文标题

校准和修剪:通过预测校准提高彩票的可靠性

Calibrate and Prune: Improving Reliability of Lottery Tickets Through Prediction Calibration

论文作者

Venkatesh, Bindya, Thiagarajan, Jayaraman J., Thopalli, Kowshik, Sattigeri, Prasanna

论文摘要

在过度参数化网络的初始化中存在子网络初始化(彩票)的假设,该网络的初始化(在隔离中进行培训时)会产生高度可推广的模型,这导致了对网络初始化的重要见解,并实现了有效的推论。具有未校准信心的监督模型即使做出错误的预测,也会过于自信。在本文中,我们首次研究了过度参数化网络中的明确置信度校准如何影响所得彩票的质量。更具体地说,我们结合了一系列校准策略,从混合正则化,方差加权置信校准到新提出的基于可能性的校准和标准化的bin分配策略。此外,我们探索了架构和数据集的不同组合,并就置信校准的作用做出了许多关键发现。我们的实证研究表明,即使使用具有挑战性的分布转移的数据对源数据集进行了重新训练,即使在准确性和经验校准指标方面,包括校准机制始终导致更有效的彩票票。

The hypothesis that sub-network initializations (lottery) exist within the initializations of over-parameterized networks, which when trained in isolation produce highly generalizable models, has led to crucial insights into network initialization and has enabled efficient inferencing. Supervised models with uncalibrated confidences tend to be overconfident even when making wrong prediction. In this paper, for the first time, we study how explicit confidence calibration in the over-parameterized network impacts the quality of the resulting lottery tickets. More specifically, we incorporate a suite of calibration strategies, ranging from mixup regularization, variance-weighted confidence calibration to the newly proposed likelihood-based calibration and normalized bin assignment strategies. Furthermore, we explore different combinations of architectures and datasets, and make a number of key findings about the role of confidence calibration. Our empirical studies reveal that including calibration mechanisms consistently lead to more effective lottery tickets, in terms of accuracy as well as empirical calibration metrics, even when retrained using data with challenging distribution shifts with respect to the source dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源