论文标题
基于芯片的超导陷阱,用于在Meissner状态下微米大小的颗粒悬浮
Chip-based superconducting traps for levitation of micrometer-sized particles in the Meissner state
论文作者
论文摘要
我们对两个基于芯片的超导陷阱体系结构进行了详细分析,这些陷阱体系结构能够在Meissner状态下悬浮千分表大小的超导颗粒。这些结构适用于使用更庞大的颗粒或前所未有的灵敏度的力和加速传感器进行新的量子实验。我们专注于基于芯片的抗螺旋型线圈型陷阱(AHC)和平面双环(DLP)陷阱。我们通过超导NB膜和NB或PB的超导颗粒的制造来证明它们的制造。我们应用有限元建模(FEM)来详细分析这两个陷阱体系结构,以详细介绍陷阱稳定性和频率。至关重要的是,在FEM中,我们考虑了陷阱的完整三维几何形状,有限的磁场渗透到悬浮的超导粒子中,脱电效应和通量量化。因此,我们可以分析超出分析模型中假设的陷阱属性。我们发现,现实的AHC陷阱产生的陷阱频率远高于10kHz,用于悬浮的粒子悬浮,并且可以用三层工艺进行制造,而DL陷阱使陷阱频率低于1kHz,并且更简单地在单层工艺中制造。我们的数值结果指导了未来的实验,目的是用基于芯片的超导陷阱在Meissner状态下悬浮千分尺的颗粒。我们使用的建模也适用于使用Meissner状态的超导体的其他情况,例如设计超导磁屏蔽或计算超导谐振器中的填充因子。
We present a detailed analysis of two chip-based superconducting trap architectures capable of levitating micrometer-sized superconducting particles in the Meissner state. These architectures are suitable for performing novel quantum experiments with more massive particles or for force and acceleration sensors of unprecedented sensitivity. We focus in our work on a chip-based anti-Helmholtz coil-type trap (AHC) and a planar double-loop (DLP) trap. We demonstrate their fabrication from superconducting Nb films and the fabrication of superconducting particles from Nb or Pb. We apply finite element modeling (FEM) to analyze these two trap architectures in detail with respect to trap stability and frequency. Crucially, in FEM we account for the complete three-dimensional geometry of the traps, finite magnetic field penetration into the levitated superconducting particle, demagnetizing effects, and flux quantization. We can, thus, analyze trap properties beyond assumptions made in analytical models. We find that realistic AHC traps yield trap frequencies well above 10kHz for levitation of micrometer-sized particles and can be fabricated with a three-layer process, while DL traps enable trap frequencies below 1kHz and are simpler to fabricate in a single-layer process. Our numerical results guide future experiments aiming at levitating micrometer-sized particles in the Meissner state with chip-based superconducting traps. The modeling we use is also applicable in other scenarios using superconductors in the Meissner state, such as for designing superconducting magnetic shields or for calculating filling factors in superconducting resonators.