论文标题

完美的Abhyankar的引理和几乎Cohen-Macaulay代数的一种变体

A variant of perfectoid Abhyankar's lemma and almost Cohen-Macaulay algebras

论文作者

Nakazato, Kei, Shimomoto, Kazuma

论文摘要

在本文中,我们证明了一个完整的Noetherian本地域,具有完美的残留场的混合特性$ P> 0 $具有一个积分的扩展名,它是一个积分封闭的,几乎是Cohen-Macaulay域,因此Frobenius Map是偏斜的Modulo $ P $。该结果被视为一个混合特征的类似物,即在积极特征中完整的局部领域的完美封闭几乎是科恩·马库拉(Cohen-Macaulay)。为此,我们进行了一项详细的研究,对完美环的年代化,并建立了安德烈(André)完美的abhyankar的引理和里曼(Riemann)的扩展定理的完美(重新完成)版本。

In this paper, we prove that a complete Noetherian local domain of mixed characteristic $p>0$ with perfect residue field has an integral extension that is an integrally closed, almost Cohen-Macaulay domain such that the Frobenius map is surjective modulo $p$. This result is seen as a mixed characteristic analogue of the fact that the perfect closure of a complete local domain in positive characteristic is almost Cohen-Macaulay. To this aim, we carry out a detailed study of decompletion of perfectoid rings and establish the Witt-perfect (decompleted) version of André's perfectoid Abhyankar's lemma and Riemann's extension theorem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源