论文标题
个性化POI推荐的关系嵌入
Relation Embedding for Personalised POI Recommendation
论文作者
论文摘要
利益点(POI)推荐是最重要的基于位置的服务之一,可帮助人们发现有趣的场所或服务。但是,极端的用户POI矩阵稀疏性和不同时空的上下文对POI系统构成了挑战,这会影响POI建议的质量。为此,我们提出了一个基于翻译的关系嵌入POI建议。我们的方法通过使用知识图嵌入技术在低维关系空间中编码时间和地理信息以及语义内容。为了进一步缓解用户POI矩阵稀疏性问题,在用户poi图上构建了组合的矩阵分解框架,以通过利用侧面信息来增强动态个人利益的推断。两个现实世界数据集的实验证明了我们提出的模型的有效性。
Point-of-Interest (POI) recommendation is one of the most important location-based services helping people discover interesting venues or services. However, the extreme user-POI matrix sparsity and the varying spatio-temporal context pose challenges for POI systems, which affects the quality of POI recommendations. To this end, we propose a translation-based relation embedding for POI recommendation. Our approach encodes the temporal and geographic information, as well as semantic contents effectively in a low-dimensional relation space by using Knowledge Graph Embedding techniques. To further alleviate the issue of user-POI matrix sparsity, a combined matrix factorization framework is built on a user-POI graph to enhance the inference of dynamic personal interests by exploiting the side-information. Experiments on two real-world datasets demonstrate the effectiveness of our proposed model.