论文标题
添加剂类别的零处理和负K理论的消失
Vanishing of Nil-terms and negative K-theory for additive categories
论文作者
论文摘要
我们将常规连贯性的概念从环扩展到添加剂类别,并表明,环对环的众所周知的后果也适用于加性类别。例如,如果是常规的相干,则负K组和所有扭曲的NIL组都消失了。这将应用于加性类别的嵌套序列,这是由我们正在进行的项目确定还原P-ADIC组的Hecke代数的代数K理论的动机。
We extend the notion of regular coherence from rings to additive categories and show that well-known consequences of regular coherence for rings also apply to additive categories. For instance the negative K-groups and all twisted Nil-groups vanish for an additive category if it is regular coherent. This will be applied to nested sequences of additive categories, motivated by our ongoing project to determine the algebraic K-theory of the Hecke algebra of a reductive p-adic group.