论文标题
通用泰勒系列和中心独立的子类
Subclasses of Universal Taylor Series and center independence
论文作者
论文摘要
如果在$ω$ $ω$的$ω$之外,taylor系列$ω$上的全体形函数f属于通用泰勒系列的子类,taylor系列的泰勒taylor扩展的taylor扩展的局部总和无限数量。如果部分总和的索引增长到无穷大,我们将证明该类别独立于选择中心的选择。
A holomorphic function f on a simply connected domain $Ω$ belongs to a subclass of universal Taylor series if prescribed and infinite number of partial sums of the Taylor expansion of f around a given center $ζ_0$ realize Mergalyan-type approximations outside $Ω$. We will prove that this class is independent of the choice of center if the indices of the partial sums do not grow very fast to infinity.