论文标题
耗散时间不确定性关系
The dissipation-time uncertainty relation
论文作者
论文摘要
我们表明,耗散速率界定了在远离平衡的随机系统中可以执行物理过程的速率。即,对于罕见的过程,我们证明了基本的权衡$ \ langle \ dot s_ \ text {e} \ rangle \ Mathcal \ Mathcal {t} \ geq k _ {\ geq k _ {\ text {b}} $ $ \ MATHCAL {T} $完成一个过程。这种耗散时间不确定性关系是一种新型的速度限制形式:耗散越小,执行过程的时间越大。
We show that the dissipation rate bounds the rate at which physical processes can be performed in stochastic systems far from equilibrium. Namely, for rare processes we prove the fundamental tradeoff $\langle \dot S_\text{e} \rangle \mathcal{T} \geq k_{\text{B}} $ between the entropy flow $\langle \dot S_\text{e} \rangle$ into the reservoirs and the mean time $\mathcal{T}$ to complete a process. This dissipation-time uncertainty relation is a novel form of speed limit: the smaller the dissipation, the larger the time to perform a process.