论文标题
量子信息中的五个开放问题
Five open problems in quantum information
论文作者
论文摘要
我们在文献中确定了量子信息理论中五个选定的开放问题,这些问题非常简单,在文献中得到了很好的研究,但从技术上讲并不容易。由于这些问题享有多种数学联系,因此它们具有巨大的突破潜力。前四个关注与量子信息相关的某些对象的存在,即在无限的尺寸序列中的对称信息的一家族群,在尺寸六的无限序列中,在六个尺寸中的相互无偏见的碱基,对于四个子系统的绝对最大纠缠状态,具有六个级别,每个级别具有六个级别,每个级别均匀绑定了纠缠的状态,并绑定了既定状态。第五个问题需要检查两个夸度系统的某个状态是否可以蒸馏。宣布了解决每个人的奖项。
We identify five selected open problems in the theory of quantum information, which are rather simple to formulate, were well-studied in the literature, but are technically not easy. As these problems enjoy diverse mathematical connections, they offer a huge breakthrough potential. The first four concern existence of certain objects relevant for quantum information, namely a family of symmetric informationally complete generalized measurements in an infinite sequence of dimensions, mutually unbiased bases in dimension six, absolutely maximally entangled states for four subsystems with six levels each and bound entangled states with negative partial transpose. The fifth problem requires checking whether a certain state of a two-ququart system is 2-copy distillable. An award for solving each of them is announced.