论文标题

对傅立叶系数有限制的圆圈嵌入

Circle embeddings with restrictions on Fourier coefficients

论文作者

Li, Liulan, Kovalev, Leonid V.

论文摘要

本文继续研究圆圈的几何形状与其傅立叶系数的值之间的关系。首先,我们回答了Kovalev和Yang的一个问题,内容涉及星光嵌入的傅立叶变换的支持。圆圈嵌入的一个重要特殊情况是圆圈的同态形态。在单方面的傅立叶支持下,这种同构是与Blaschke产品相关的合理功能。我们研究理性圆的同态同态的结构,并表明它们在统一拓扑中形成了连接的集合。

This paper continues the investigation of the relation between the geometry of a circle embedding and the values of its Fourier coefficients. First, we answer a question of Kovalev and Yang concerning the support of the Fourier transform of a starlike embedding. An important special case of circle embeddings are homeomorphisms of the circle onto itself. Under a one-sided bound on the Fourier support, such homeomorphisms are rational functions related to Blaschke products. We study the structure of rational circle homeomorphisms and show that they form a connected set in the uniform topology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源