论文标题
机器学习保证的歧管
Manifold for Machine Learning Assurance
论文作者
论文摘要
在关键任务中,启用机器学习(ML)启用的系统的使用越来越多,可以使人们寻求新颖的验证和验证技术,但基于公认的系统保证原则。在传统的系统开发中,基于模型的技术已被广泛采用,其中中心的前提是所需系统的抽象模型为判断其实施提供了合理的基础。我们使用一种ML技术对ML系统提出了一种类似的方法,该方法从高维训练数据中提取,该数据隐含地描述了所需的系统,即低维的基础结构 - 一种歧管。然后,它可以利用一系列质量保证任务,例如测试充足性测量,测试输入生成和目标ML系统的运行时监视。该方法建立在变异自动编码器上,这是一种无监督的方法,用于在给定的高维数据集和低维表示之间学习一对相互接近分离的函数。初步实验表明,针对测试充足性的拟议的基于歧管的方法驱动了测试数据中的多样性,用于测试生成会产生雾化而逼真的测试用例,并且用于运行时监控提供了一种独立的手段来评估目标系统输出的可信度。
The increasing use of machine-learning (ML) enabled systems in critical tasks fuels the quest for novel verification and validation techniques yet grounded in accepted system assurance principles. In traditional system development, model-based techniques have been widely adopted, where the central premise is that abstract models of the required system provide a sound basis for judging its implementation. We posit an analogous approach for ML systems using an ML technique that extracts from the high-dimensional training data implicitly describing the required system, a low-dimensional underlying structure--a manifold. It is then harnessed for a range of quality assurance tasks such as test adequacy measurement, test input generation, and runtime monitoring of the target ML system. The approach is built on variational autoencoder, an unsupervised method for learning a pair of mutually near-inverse functions between a given high-dimensional dataset and a low-dimensional representation. Preliminary experiments establish that the proposed manifold-based approach, for test adequacy drives diversity in test data, for test generation yields fault-revealing yet realistic test cases, and for runtime monitoring provides an independent means to assess trustability of the target system's output.