论文标题

第二种局部均匀局部O最小结构的维度不等式

Dimension inequality for a definably complete uniformly locally o-minimal structure of the second kind

论文作者

Fujita, Masato

论文摘要

考虑第二种密度线性有序的Abelian群的明确完整的局部O-最低膨胀。令$ f:x \ rightarrow r^n $为可定义的地图,其中$ x $是可定义的集合,$ r $是结构的宇宙。我们在本文中演示了不等式$ \ dim(f(x))\ leq \ dim(x)$。作为推论,我们得到$ f $不连续的点的集合小于$ \ dim(x)$。我们还表明,在不平等的证明过程中,该结构是明确的。

Consider a definably complete uniformly locally o-minimal expansion of the second kind of a densely linearly ordered abelian group. Let $f:X \rightarrow R^n$ be a definable map, where $X$ is a definable set and $R$ is the universe of the structure. We demonstrate the inequality $\dim(f(X)) \leq \dim(X)$ in this paper. As a corollary, we get that the set of the points at which $f$ is discontinuous is of dimension smaller than $\dim(X)$. We also show that the structure is defiably Baire in the course of the proof of the inequality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源