论文标题

元学习框架,并应用于预测零拍的时间序列

Meta-learning framework with applications to zero-shot time-series forecasting

论文作者

Oreshkin, Boris N., Carpov, Dmitri, Chapados, Nicolas, Bengio, Yoshua

论文摘要

元学习能否从不同数据集中发现通用处理时间序列(TS),从而大大改善来自不同数据集的新TS的概括?这项工作使用广泛的元学习框架为此提供了积极的证据,我们向我们展示了许多现有的元学习算法。我们的理论分析表明,残差连接是一种元学习适应机制,基于给定的TS输入生成了特定于任务特异性参数的子集,从而逐渐扩大了架构的表达能力。通过线性化分析显示了相同的机制,以对最终线性层的顺序更新进行解释。我们对广泛数据的经验结果强调了确定的元学习机制对于成功零单变量的成功预测的重要性,这表明在源TS数据集中训练神经网络并在不同的目标TS数据集中进行训练并在不进行绩效的情况下进行良好的效果效果,它可行。

Can meta-learning discover generic ways of processing time series (TS) from a diverse dataset so as to greatly improve generalization on new TS coming from different datasets? This work provides positive evidence to this using a broad meta-learning framework which we show subsumes many existing meta-learning algorithms. Our theoretical analysis suggests that residual connections act as a meta-learning adaptation mechanism, generating a subset of task-specific parameters based on a given TS input, thus gradually expanding the expressive power of the architecture on-the-fly. The same mechanism is shown via linearization analysis to have the interpretation of a sequential update of the final linear layer. Our empirical results on a wide range of data emphasize the importance of the identified meta-learning mechanisms for successful zero-shot univariate forecasting, suggesting that it is viable to train a neural network on a source TS dataset and deploy it on a different target TS dataset without retraining, resulting in performance that is at least as good as that of state-of-practice univariate forecasting models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源