论文标题

3D显微镜图像中学习核分割的辅助任务

An Auxiliary Task for Learning Nuclei Segmentation in 3D Microscopy Images

论文作者

Hirsch, Peter, Kainmueller, Dagmar

论文摘要

显微镜图像中细胞核的分割是细胞生物学中普遍的必要性。特别是对于三维数据集,手动分割非常耗时,激发了对自动化方法的需求。基于学习的方法在像素方面的基础真相分割训练可以在核的2D基准图像数据上产生最新的结果,但是对于3D图像数据而缺少相应的基准测试。在这项工作中,我们对手动分割的3D光显微镜体积数据库上的核分割算法进行了比较评估。我们提出了一种新颖的学习策略,该策略通过简单的辅助任务来提高细分精度,从而强大的表现优于我们的每个基准。此外,我们表明我们的一种基线,即经过我们提出的辅助任务培训的流行三标签模型,比最近的Stardist-3D胜过。作为另一种实际贡献,我们基准针对核检测的核分割,即仅在不生成各自的像素精度分割的情况下仅查明单个核的任务。为了学习核检测,可以使用手动注释核心点的大型3D训练数据集。但是,尚未量化对这种稀疏地面真理的训练对检测准确性的影响,而不是密集的像素地面真理。为此,我们比较了通过对密集与稀疏地面真理进行训练所产生的核检测精度。我们的结果表明,对稀疏地面真理的培训产生竞争性核检测率。

Segmentation of cell nuclei in microscopy images is a prevalent necessity in cell biology. Especially for three-dimensional datasets, manual segmentation is prohibitively time-consuming, motivating the need for automated methods. Learning-based methods trained on pixel-wise ground-truth segmentations have been shown to yield state-of-the-art results on 2d benchmark image data of nuclei, yet a respective benchmark is missing for 3d image data. In this work, we perform a comparative evaluation of nuclei segmentation algorithms on a database of manually segmented 3d light microscopy volumes. We propose a novel learning strategy that boosts segmentation accuracy by means of a simple auxiliary task, thereby robustly outperforming each of our baselines. Furthermore, we show that one of our baselines, the popular three-label model, when trained with our proposed auxiliary task, outperforms the recent StarDist-3D. As an additional, practical contribution, we benchmark nuclei segmentation against nuclei detection, i.e. the task of merely pinpointing individual nuclei without generating respective pixel-accurate segmentations. For learning nuclei detection, large 3d training datasets of manually annotated nuclei center points are available. However, the impact on detection accuracy caused by training on such sparse ground truth as opposed to dense pixel-wise ground truth has not yet been quantified. To this end, we compare nuclei detection accuracy yielded by training on dense vs. sparse ground truth. Our results suggest that training on sparse ground truth yields competitive nuclei detection rates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源