论文标题

非参数回归量子神经网络

Nonparametric Regression Quantum Neural Networks

论文作者

Diep, Do Ngoc, Nagata, Koji, Nakamura, Tadao

论文摘要

In two pervious papers \cite{dndiep3}, \cite{dndiep4}, the first author constructed the least square quantum neural networks (LS-QNN), and ploynomial interpolation quantum neural networks ( PI-QNN), parametrico-stattistical QNN like: leanr regrassion quantum neural networks (LR-QNN),多项式回归量子神经网络(PR-QNN),卡方量子神经netowrks($χ^2 $ -QNN)。我们观察到该方法在这种情况下也可以使用非参数统计。在本文中,我们分析并实施了对QNN的非参数测试,例如:线性非参数回归量子神经网络(LNR-QNN),多项式非参数回归量子神经网络(PNR-QNN)。实施是通过高斯 - 约旦消除量子神经网络(GJE-QNN)构建的。训练规则是使用高概率置信区域或间隔。

In two pervious papers \cite{dndiep3}, \cite{dndiep4}, the first author constructed the least square quantum neural networks (LS-QNN), and ploynomial interpolation quantum neural networks ( PI-QNN), parametrico-stattistical QNN like: leanr regrassion quantum neural networks (LR-QNN), polynomial regression quantum neural networks (PR-QNN), chi-squared quantum neural netowrks ($χ^2$-QNN). We observed that the method works also in the cases by using nonparametric statistics. In this paper we analyze and implement the nonparametric tests on QNN such as: linear nonparametric regression quantum neural networks (LNR-QNN), polynomial nonparametric regression quantum neural networks (PNR-QNN). The implementation is constructed through the Gauss-Jordan Elimination quantum neural networks (GJE-QNN).The training rule is to use the high probability confidence regions or intervals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源