论文标题

相关函数:宇宙网络的偏置和分形特性

Correlation function: biasing and fractal properties of the cosmic web

论文作者

Einasto, J., Hütsi, G., Kuutma, T., Einasto, M.

论文摘要

We calculated spatial correlation functions of galaxies, $ξ(r)$, structure functions, $g(r)=1 +ξ(r)$, gradient functions, $γ(r)= d \log g(r)/ d \log r$, and fractal dimension functions, $D(r)= 3+γ(r)$, using dark matter particles of the biased $Λ$ cold dark matter (CDM)仿真,观察到的斯隆数字天空调查(SDSS)的星系以及千年和鹰模拟的模拟星系。我们分析了这些功能如何描述宇宙网络的分形和偏置特性。有偏见的$λ$ CDM模型样本在小距离(粒子和星系间),$ r \ le 2.25 $〜\ mpc的相关函数,描述深色物质(DM)Halos内部物质的分布。在实际和模拟的星系样品中,仅可见簇中最明亮的星系,并且从簇到细丝的过渡发生在$ r \ r \ of \ r \ of \ r \约0.8-1.5 $〜\ mpc。 $ M_R \ ge -19 $的真实和模拟的星系具有几乎相同的相关长度和振幅,表明矮星系是明亮星系较明亮的卫星,并且在空隙中没有平稳的人群。几个物理过程(例如,沿粒子轨迹的苛性遗殖性形成和在各种尺度上的密度扰动的相同步)的组合将初始随机密度场转化为当前高度非随机密度场。星系形成在空隙中被抑制,这增加了星系的相关函数和功率谱的幅度,并增加了大规模偏置参数。合并的证据导致$ l_ \ star $ galaxies的大规模偏置参数值$ b_ \ star = 1.85 \ pm 0.15 $。我们发现$ r_0(l_ \ star)= 7.20 \ pm 0.19 $,用于$ l_ \ star $ galaxies的相关长度。

We calculated spatial correlation functions of galaxies, $ξ(r)$, structure functions, $g(r)=1 +ξ(r)$, gradient functions, $γ(r)= d \log g(r)/ d \log r$, and fractal dimension functions, $D(r)= 3+γ(r)$, using dark matter particles of the biased $Λ$ cold dark matter (CDM) simulation, observed galaxies of the Sloan Digital Sky Survey (SDSS), and simulated galaxies of the Millennium and EAGLE simulations. We analysed how these functions describe fractal and biasing properties of the cosmic web. The correlation functions of the biased $Λ$CDM model samples at small distances (particle and galaxy separations), $r \le 2.25$~\Mpc, describe the distribution of matter inside dark matter (DM) halos. In real and simulated galaxy samples, only the brightest galaxies in clusters are visible, and the transition from clusters to filaments occurs at a distance $r \approx 0.8 - 1.5$~\Mpc. Real and simulated galaxies of low luminosity, $M_r \ge -19$, have almost identical correlation lengths and amplitudes, indicating that dwarf galaxies are satellites of brighter galaxies, and do not form a smooth population in voids. The combination of several physical processes (e.g. the formation of halos along the caustics of particle trajectories and the phase synchronisation of density perturbations on various scales) transforms the initial random density field to the current highly non-random density field. Galaxy formation is suppressed in voids, which increases the amplitudes of correlation functions and power spectra of galaxies, and increases the large-scale bias parameter. The combined evidence leads to the large-scale bias parameter of $L_\star$ galaxies the value $b_\star =1.85 \pm 0.15$. We find $r_0(L_\star) = 7.20 \pm 0.19$ for the correlation length of $L_\star$ galaxies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源