论文标题

弱黄 - Zakai的一阶收敛 - 莱维驱动的Marcus SDES的近似值

First order convergence of weak Wong--Zakai approximations of Lévy driven Marcus SDEs

论文作者

Kosenkova, Tetyana, Kulik, Alexei, Pavlyukevich, Ilya

论文摘要

对于解决方案,$ x =(x_t)_ {t \ in [0,t]} $lévy-drive-marcus驱动的marcus随机微分方程我们研究wong - zakai类型time离散近似值$ \ bar x =(\ bar x_ {kh}) f(x_t)-e f(x^h_t)| \ leq c h $ for $ f \ in c_b^4 $。

For solutions $X=(X_t)_{t\in[0,T]}$ of Lévy-driven Marcus stochastic differential equations we study the Wong--Zakai type time discrete approximations $\bar X=(\bar X_{kh})_{0\leq k\leq T/h}$, $h>0$, and establish the first order convergence $|E f(X_T)-E f(X^h_T)|\leq C h$ for $f\in C_b^4$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源