论文标题
非线性状态空间模型的高斯变异状态估计
Gaussian Variational State Estimation for Nonlinear State-Space Models
论文作者
论文摘要
在本文中,考虑到非线性状态空间模型,状态估计的问题,在过滤和平滑的背景下。由于模型的非线性性质,状态估计问题通常是棘手的,因为它涉及一般非线性函数的积分,并且过滤和平滑的状态分布缺乏封闭形式的解决方案。因此,通常近似国家估计问题。在本文中,我们基于变异推理开发了假定的高斯解决方案,该解决方案为近似所需分布提供了灵活但有原则的机制的关键优势。我们的主要贡献在于对状态估计问题作为优化问题的新公式,然后可以使用采用精确的一阶和二阶导数的标准优化程序来解决该问题。由此产生的状态估计方法涉及最少数量的假设,并直接适用于具有高斯和非高斯概率模型的非线性系统。在几个示例中证明了我们的方法的表现。具有挑战性的标量系统,简单的机器人系统的模型以及使用Von Mises-Fisher分布的目标跟踪问题,并且表现优于替代性的高斯估计方法。
In this paper, the problem of state estimation, in the context of both filtering and smoothing, for nonlinear state-space models is considered. Due to the nonlinear nature of the models, the state estimation problem is generally intractable as it involves integrals of general nonlinear functions and the filtered and smoothed state distributions lack closed-form solutions. As such, it is common to approximate the state estimation problem. In this paper, we develop an assumed Gaussian solution based on variational inference, which offers the key advantage of a flexible, but principled, mechanism for approximating the required distributions. Our main contribution lies in a new formulation of the state estimation problem as an optimisation problem, which can then be solved using standard optimisation routines that employ exact first- and second-order derivatives. The resulting state estimation approach involves a minimal number of assumptions and applies directly to nonlinear systems with both Gaussian and non-Gaussian probabilistic models. The performance of our approach is demonstrated on several examples; a challenging scalar system, a model of a simple robotic system, and a target tracking problem using a von Mises-Fisher distribution and outperforms alternative assumed Gaussian approaches to state estimation.