论文标题
通过无监督的机器学习检索的拓扑量子相变
Topological quantum phase transitions retrieved through unsupervised machine learning
论文作者
论文摘要
量子状态的拓扑特征的发现在现代冷凝物理物理和各种人造系统中起着重要作用。由于没有局部顺序参数,拓扑量子相变的检测仍然是一个挑战。机器学习可以提供有效的方法来识别拓扑特征。在这项工作中,我们表明,无监督的流形学习可以成功地检索动量和真实空间中的拓扑量子相变。我们的结果表明,两个数据点之间的Chebyshev距离逐渐增强了动量空间中拓扑量子相变的特征,而广泛使用的欧几里得距离通常是最佳的。然后,可以应用扩散图或等距图来实施降低维度,并以无监督的方式学习拓扑量子相变。我们在典型的Su-Schrieffer-Heeger(SSH)模型,Qi-Wu-Zhang(QWZ)模型以及动量空间中的淬火SSH模型上演示了这种方法,并进一步提供了对真实空间中学习的含义和演示,在该空间中,拓扑不变性可能是未知的或很难计算的。我们方法的可解释的良好性能表明,在配备合适的距离度量的情况下,在探索拓扑量子相变的方面表明了流形学习的能力。
The discovery of topological features of quantum states plays an important role in modern condensed matter physics and various artificial systems. Due to the absence of local order parameters, the detection of topological quantum phase transitions remains a challenge. Machine learning may provide effective methods for identifying topological features. In this work, we show that the unsupervised manifold learning can successfully retrieve topological quantum phase transitions in momentum and real space. Our results show that the Chebyshev distance between two data points sharpens the characteristic features of topological quantum phase transitions in momentum space, while the widely used Euclidean distance is in general suboptimal. Then a diffusion map or isometric map can be applied to implement the dimensionality reduction, and to learn about topological quantum phase transitions in an unsupervised manner. We demonstrate this method on the prototypical Su-Schrieffer-Heeger (SSH) model, the Qi-Wu-Zhang (QWZ) model, and the quenched SSH model in momentum space, and further provide implications and demonstrations for learning in real space, where the topological invariants could be unknown or hard to compute. The interpretable good performance of our approach shows the capability of manifold learning, when equipped with a suitable distance metric, in exploring topological quantum phase transitions.