论文标题
细颗粒的城市流量推理
Fine-Grained Urban Flow Inference
论文作者
论文摘要
城市流量监测系统中监视设备的普遍部署引起了维护和操作的巨大成本。需要一项技术来减少部署的设备数量,同时防止数据准确性和粒度的退化。在本文中,我们提出了一种基于粗粒度观察的城市中实时和细颗粒人群流动的方法。这项任务表现出两个挑战:粗粒和细颗粒的城市流以及外部影响的复杂性之间的空间相关性。为了解决这些问题,我们开发了一个标题为“ UrbanFM”的模型,该模型由两个主要部分组成:1)从粗粒输入中生成细粒流量分布的推理网络,该输入使用特征提取模块和一个新颖的分布提升模块; 2)一般融合子网,通过考虑不同外部因素的影响,以进一步提高性能。这种结构为小规模上采样提供了出色的有效性和效率。但是,UrbanFM使用的单通量上采样不足以较高的升级速率。因此,我们进一步提出了Urbanpy,这是一种通过将原始任务分解为多个子任务来逐步推断出细粒度城市流量的级联模型。与UrbanFM相比,这种增强的结构表现出对大型推理任务的有利性能。
The ubiquitous deployment of monitoring devices in urban flow monitoring systems induces a significant cost for maintenance and operation. A technique is required to reduce the number of deployed devices, while preventing the degeneration of data accuracy and granularity. In this paper, we present an approach for inferring the real-time and fine-grained crowd flows throughout a city based on coarse-grained observations. This task exhibits two challenges: the spatial correlations between coarse- and fine-grained urban flows, and the complexities of external impacts. To tackle these issues, we develop a model entitled UrbanFM which consists of two major parts: 1) an inference network to generate fine-grained flow distributions from coarse-grained inputs that uses a feature extraction module and a novel distributional upsampling module; 2) a general fusion subnet to further boost the performance by considering the influence of different external factors. This structure provides outstanding effectiveness and efficiency for small scale upsampling. However, the single-pass upsampling used by UrbanFM is insufficient at higher upscaling rates. Therefore, we further present UrbanPy, a cascading model for progressive inference of fine-grained urban flows by decomposing the original tasks into multiple subtasks. Compared to UrbanFM, such an enhanced structure demonstrates favorable performance for larger-scale inference tasks.