论文标题
Perm2Vec:使用自我注意的误差校正代码解码的图形置换选择
perm2vec: Graph Permutation Selection for Decoding of Error Correction Codes using Self-Attention
论文作者
论文摘要
错误校正代码是通信应用程序不可或缺的一部分,从而提高了传输的可靠性。传输代码字的最佳解码是最大似然规则,由于维度的诅咒,它是NP-HARD。为了实现实际实现,采用了次优的解码算法;然而,有限的理论见解阻止人们利用这些算法的全部潜力。这样的见解就是选择排列解码中的置换。我们提出了一个用于排列选择的数据驱动框架,将域知识与机器学习概念(如节点嵌入和自我注意)相结合。在基线解码器上引入了所有模拟代码的位错误率的显着和一致的提高。据作者所知,这项工作是第一个利用物理层通信系统中神经变压器网络的好处的作品。
Error correction codes are an integral part of communication applications, boosting the reliability of transmission. The optimal decoding of transmitted codewords is the maximum likelihood rule, which is NP-hard due to the curse of dimensionality. For practical realizations, sub-optimal decoding algorithms are employed; yet limited theoretical insights prevent one from exploiting the full potential of these algorithms. One such insight is the choice of permutation in permutation decoding. We present a data-driven framework for permutation selection, combining domain knowledge with machine learning concepts such as node embedding and self-attention. Significant and consistent improvements in the bit error rate are introduced for all simulated codes, over the baseline decoders. To the best of the authors' knowledge, this work is the first to leverage the benefits of the neural Transformer networks in physical layer communication systems.