论文标题

在平面比赛中翻转

On flips in planar matchings

论文作者

Milich, Marcel, Mütze, Torsten, Pergel, Martin

论文摘要

在本文中,我们研究了平面中非划线完美匹配的翻转图的结构。具体而言,请考虑一组$ 2N $点上的所有非交叉直线完美匹配,这些匹配位于单位圆圈上。在这种匹配上的翻转操作取代了两个横跨四边形的匹配边缘,并替换了四边形的其他两个边缘,如果四边形包含单元圆的中心,则称为flip。图$ \ MATHCAL {G} _n $具有这些匹配为顶点,并且在翻转不同的两个匹配之间具有边缘,并且已知它具有许多有趣的属性。在本文中,我们专注于$ \ MATHCAL $ \ MATHCAL {h} _n $的$ \ Mathcal {G} _n $获得的所有与中心翻转相对应的边缘获得的,省略了与非中心翻转相对应的边缘。我们表明,图$ \ MATHCAL {H} _n $已连接到奇数$ n $,但在$ n $中呈指数级的小型连接组件,我们通过加泰罗尼亚和广义的narayana数字来表征和计数。对于Odd $ n $,我们还证明了$ \ Mathcal {h} _n $的直径在$ n $中是线性的。此外,我们确定所有$ n $的$ \ MATHCAL {H} _n $的最低和最大程度,并表征并计算相应的顶点。我们的结果暗示了某些彩虹循环在$ \ Mathcal {g} _n $中不存在,它们解决了Felsner,Kleist,Mütze和Sering在最近的一篇论文中提出的几个空旷的问题和猜想。

In this paper we investigate the structure of flip graphs on non-crossing perfect matchings in the plane. Specifically, consider all non-crossing straight-line perfect matchings on a set of $2n$ points that are placed equidistantly on the unit circle. A flip operation on such a matching replaces two matching edges that span an empty quadrilateral with the other two edges of the quadrilateral, and the flip is called centered if the quadrilateral contains the center of the unit circle. The graph $\mathcal{G}_n$ has those matchings as vertices, and an edge between any two matchings that differ in a flip, and it is known to have many interesting properties. In this paper we focus on the spanning subgraph $\mathcal{H}_n$ of $\mathcal{G}_n$ obtained by taking all edges that correspond to centered flips, omitting edges that correspond to non-centered flips. We show that the graph $\mathcal{H}_n$ is connected for odd $n$, but has exponentially many small connected components for even $n$, which we characterize and count via Catalan and generalized Narayana numbers. For odd $n$, we also prove that the diameter of $\mathcal{H}_n$ is linear in $n$. Furthermore, we determine the minimum and maximum degree of $\mathcal{H}_n$ for all $n$, and characterize and count the corresponding vertices. Our results imply the non-existence of certain rainbow cycles in $\mathcal{G}_n$, and they resolve several open questions and conjectures raised in a recent paper by Felsner, Kleist, Mütze, and Sering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源