论文标题
关于模量空间的IRS紧凑
On the IRS compactification of moduli space
论文作者
论文摘要
在ARXIV中:1503.08402V2 Gelander使用不变的随机亚组描述了有限区域双曲线表面的模量空间的新紧凑型。本文的目的是将这种压缩与经典的增强模量空间(也称为Deligne-Mumford紧凑型)联系起来。我们定义了从增强模量空间到IRS紧凑型的连续有限次陈述。该地图纤维的基础性接受了一个均匀的上限,仅取决于基础表面的拓扑。
In arXiv:1503.08402v2 Gelander described a new compactification of the moduli space of finite area hyperbolic surfaces using invariant random subgroups. The goal of this paper is to relate this compactification to the classical augmented moduli space, also known as the Deligne-Mumford compactification. We define a continuous finite-to-one surjection from the augmented moduli space to the IRS compactification. The cardinalities of this map's fibers admit a uniform upper bound that depends only on the topology of the underlying surface.