论文标题

集成的光学多离子量子逻辑

Integrated optical multi-ion quantum logic

论文作者

Mehta, Karan K., Zhang, Chi, Malinowski, Maciej, Nguyen, Thanh-Long, Stadler, Martin, Home, Jonathan P.

论文摘要

实用且有用的量子信息处理(QIP)需要在基本操作和规模上的错误率时就当前系统进行重大改进。对于长期系统而言,单个被困的离子Qubits的基本质量是有希望的,但是与其精确控制有关的光学器件是扩展的障碍。正如先前使用单个离子的工作所建议的那样,在离子陷阱设备中集成的平面型光学器件可以使此类系统同时更强和可行。在这里,我们使用与表面电极离子陷阱共同设计的可伸缩光学器件来实现高保真多离子量子逻辑门,这通常是构建量子计算必不可少的精确,大规模纠缠的限制元素。通过在多个通道上的直接纤维耦合,在低温环境中有效地传递了光线,从而消除了光束对齐真空系统和低温器的需求,以及对振动和光束指向漂移的鲁棒性。这使我们能够对离子运动进行地下态激光冷却,并实施大门生成具有忠诚度$> 99.3(2)\%$的两型离子纠缠状态。这项工作展示了降低噪声并在敏感量子逻辑中漂移的硬件,同时为高保真量子处理器提供了实用并行的途径。类似的设备也可能在中性原子和基于离子的量子感应和计时上找到应用。

Practical and useful quantum information processing (QIP) requires significant improvements with respect to current systems, both in error rates of basic operations and in scale. Individual trapped-ion qubits' fundamental qualities are promising for long-term systems, but the optics involved in their precise control are a barrier to scaling. Planar-fabricated optics integrated within ion trap devices can make such systems simultaneously more robust and parallelizable, as suggested by previous work with single ions. Here we use scalable optics co-fabricated with a surface-electrode ion trap to achieve high-fidelity multi-ion quantum logic gates, often the limiting elements in building up the precise, large-scale entanglement essential to quantum computation. Light is efficiently delivered to a trap chip in a cryogenic environment via direct fibre coupling on multiple channels, eliminating the need for beam alignment into vacuum systems and cryostats and lending robustness to vibrations and beam pointing drifts. This allows us to perform ground-state laser cooling of ion motion, and to implement gates generating two-ion entangled states with fidelities $>99.3(2)\%$. This work demonstrates hardware that reduces noise and drifts in sensitive quantum logic, and simultaneously offers a route to practical parallelization for high-fidelity quantum processors. Similar devices may also find applications in neutral atom and ion-based quantum-sensing and timekeeping.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源