论文标题

gim:高斯隔离机

GIM: Gaussian Isolation Machines

论文作者

Amit, Guy, Rosenberg, Ishai, Levy, Moshe, Bitton, Ron, Shabtai, Asaf, Elovici, Yuval

论文摘要

在许多情况下,神经网络分类器可能会暴露于其训练分配数据以外的输入数据。来自外部分布的样本可以分为现有类,具有基于SoftMax的分类器的可能性很高;这种不正确的分类会影响分类器的性能以及依赖于它们的应用程序/系统。先前的研究旨在区分训练分布数据和分布数据(OOD)(OOD)提出了分类方法外部的检测器。我们提出了高斯隔离机(GIM),这是一种新型混合(生成歧义)分类器,旨在解决遇到OOD数据时出现的问题。 GIM基于神经网络,并利用了一种新的损失函数,该函数在神经网络的输出空间中对每个受过训练的类都施加了分布,这可以由高斯近似。提出的GIM的新颖性在于其歧视性能和生成能力,这是一个通常在单个分类器中看不到的特征的组合。 GIM在图像识别和情感分析基准测试数据集上实现了最新的分类结果,还可以处理OOD输入。

In many cases, neural network classifiers are likely to be exposed to input data that is outside of their training distribution data. Samples from outside the distribution may be classified as an existing class with high probability by softmax-based classifiers; such incorrect classifications affect the performance of the classifiers and the applications/systems that depend on them. Previous research aimed at distinguishing training distribution data from out-of-distribution data (OOD) has proposed detectors that are external to the classification method. We present Gaussian isolation machine (GIM), a novel hybrid (generative-discriminative) classifier aimed at solving the problem arising when OOD data is encountered. The GIM is based on a neural network and utilizes a new loss function that imposes a distribution on each of the trained classes in the neural network's output space, which can be approximated by a Gaussian. The proposed GIM's novelty lies in its discriminative performance and generative capabilities, a combination of characteristics not usually seen in a single classifier. The GIM achieves state-of-the-art classification results on image recognition and sentiment analysis benchmarking datasets and can also deal with OOD inputs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源