论文标题

非结构化角色对话的神经主题扩展框架

A Neural Topical Expansion Framework for Unstructured Persona-oriented Dialogue Generation

论文作者

Xu, Minghong, Li, Piji, Yang, Haoran, Ren, Pengjie, Ren, Zhaochun, Chen, Zhumin, Ma, Jun

论文摘要

通过利用预定义的自然语言用户角色描述(例如,“我是素食主义者”),非结构化的面向角色的对话系统(UPDS)已被证明可以有效地产生角色一致的响应。但是,预定义的用户角色描述通常很短,仅限于几个描述性单词,这使得它们与对话相关。结果,现有方法无法使用角色描述,或者在产生角色一致的响应时不正确地使用它们。为了解决这个问题,我们提出了一个神经局部扩展框架,即角色探索和剥削(PEE),它能够在使用语义相关的内容之前将预定义的用户角色描述扩展到使用它们来生成对话响应之前。小便由两个主要模块组成:角色探索和角色剥削。前者通过使用基于变异的自动编码器(VAE)主题模型来挖掘并与现有的对话语料库进行挖掘并与现有的对话语料库相关联,以扩展预定义的用户角色描述。后者通过利用预定义和扩展的用户角色描述来学会产生角色一致的响应。为了使角色剥削学会更正确地利用用户角色描述,我们还介绍了两个面向角色的损失功能:面向角色的匹配(P匹配)损失和面向角色的词(P-BOWS)损失(P-BOWS)损失,分别在编码器和解码器中监督角色的选择。实验结果表明,就自动和人类评估而言,我们的方法的表现优于最先进的基线。

Unstructured Persona-oriented Dialogue Systems (UPDS) has been demonstrated effective in generating persona consistent responses by utilizing predefined natural language user persona descriptions (e.g., "I am a vegan"). However, the predefined user persona descriptions are usually short and limited to only a few descriptive words, which makes it hard to correlate them with the dialogues. As a result, existing methods either fail to use the persona description or use them improperly when generating persona consistent responses. To address this, we propose a neural topical expansion framework, namely Persona Exploration and Exploitation (PEE), which is able to extend the predefined user persona description with semantically correlated content before utilizing them to generate dialogue responses. PEE consists of two main modules: persona exploration and persona exploitation. The former learns to extend the predefined user persona description by mining and correlating with existing dialogue corpus using a variational auto-encoder (VAE) based topic model. The latter learns to generate persona consistent responses by utilizing the predefined and extended user persona description. In order to make persona exploitation learn to utilize user persona description more properly, we also introduce two persona-oriented loss functions: Persona-oriented Matching (P-Match) loss and Persona-oriented Bag-of-Words (P-BoWs) loss which respectively supervise persona selection in encoder and decoder. Experimental results show that our approach outperforms state-of-the-art baselines, in terms of both automatic and human evaluations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源