论文标题
重建来自半群
Reconstructing Etale Groupoids from Semigroups
论文作者
论文摘要
我们统一了各种典型的类群体重建定理,例如: 1)kumjian-renault的重建来自c.-algebra。 2)EXEL的重建来自充足的反向半群。 3)Steinberg从Glopoid环的重建。 4)Choi-Gardella-Thiel的重建是从一个l^p-Algebra的。 We do this by working with certain bumpy semigroups S of functions defined on an étale groupoid G. The semigroup structure of S together with the diagonal subsemigroup D then yields a natural domination relation < on S. The groupoid of <-ultrafilters is then isomorphic to the original groupoid G.
We unify various étale groupoid reconstruction theorems such as: 1) Kumjian-Renault's reconstruction from a groupoid C*-algebra. 2) Exel's reconstruction from an ample inverse semigroup. 3) Steinberg's reconstruction from a groupoid ring. 4) Choi-Gardella-Thiel's reconstruction from a groupoid L^p-algebra. We do this by working with certain bumpy semigroups S of functions defined on an étale groupoid G. The semigroup structure of S together with the diagonal subsemigroup D then yields a natural domination relation < on S. The groupoid of <-ultrafilters is then isomorphic to the original groupoid G.