论文标题

重建来自半群

Reconstructing Etale Groupoids from Semigroups

论文作者

Bice, Tristan, Clark, Lisa Orloff

论文摘要

我们统一了各种典型的类群体重建定理,例如: 1)kumjian-renault的重建来自c.-algebra。 2)EXEL的重建来自充足的反向半群。 3)Steinberg从Glopoid环的重建。 4)Choi-Gardella-Thiel的重建是从一个l^p-Algebra的。 We do this by working with certain bumpy semigroups S of functions defined on an étale groupoid G. The semigroup structure of S together with the diagonal subsemigroup D then yields a natural domination relation < on S. The groupoid of <-ultrafilters is then isomorphic to the original groupoid G.

We unify various étale groupoid reconstruction theorems such as: 1) Kumjian-Renault's reconstruction from a groupoid C*-algebra. 2) Exel's reconstruction from an ample inverse semigroup. 3) Steinberg's reconstruction from a groupoid ring. 4) Choi-Gardella-Thiel's reconstruction from a groupoid L^p-algebra. We do this by working with certain bumpy semigroups S of functions defined on an étale groupoid G. The semigroup structure of S together with the diagonal subsemigroup D then yields a natural domination relation < on S. The groupoid of <-ultrafilters is then isomorphic to the original groupoid G.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源