论文标题
无纤维稳定系统中的无重组预测
No-Regret Prediction in Marginally Stable Systems
论文作者
论文摘要
我们考虑在边界稳定的线性动力学系统中的在线预测问题,但受到有限的对抗或(非偏性)随机扰动的问题。这构成了两个挑战。首先,该系统通常是无法识别的,因此不适用参数恢复的最新和经典结果。其次,由于我们允许系统略微稳定,因此状态可以随时间多样化。这会导致在线凸优化中的标准后悔界限是空置的。尽管面临这些挑战,但我们表明,在线最小二乘算法实现了sublrinear的遗憾(在随机环境中可以改善各种偏向于pologrogarithmic),并且对系统参数的多项式依赖性。这需要进行精致的遗憾分析,包括一个结构性引理,即即使状态在多个一级增长,系统的当前状态也是过去状态的小线性组合。通过将我们的技术应用于学习自回旋滤波器,我们还在高斯噪声下部分观察到的设置以及多项式依赖相关的卡尔曼滤波器的内存中实现了对数遗憾。
We consider the problem of online prediction in a marginally stable linear dynamical system subject to bounded adversarial or (non-isotropic) stochastic perturbations. This poses two challenges. Firstly, the system is in general unidentifiable, so recent and classical results on parameter recovery do not apply. Secondly, because we allow the system to be marginally stable, the state can grow polynomially with time; this causes standard regret bounds in online convex optimization to be vacuous. In spite of these challenges, we show that the online least-squares algorithm achieves sublinear regret (improvable to polylogarithmic in the stochastic setting), with polynomial dependence on the system's parameters. This requires a refined regret analysis, including a structural lemma showing the current state of the system to be a small linear combination of past states, even if the state grows polynomially. By applying our techniques to learning an autoregressive filter, we also achieve logarithmic regret in the partially observed setting under Gaussian noise, with polynomial dependence on the memory of the associated Kalman filter.