论文标题
乘法部分异构体和C* - 代数量子群
Multiplicative partial isometries and C*-algebraic quantum groupoids
论文作者
论文摘要
概括了乘法统一的概念(从Baaj-skandalis的意义上讲),该概念在局部紧凑型量子群的理论中起着基本作用,我们在本文中提出了乘法部分等距的概念。公理包括五角大楼方程,但需要更多。在适当的条件下(例如“可管理性”),可以从中构造一对具有C*-ergebraic量子群的结构的C* - 代数。
Generalizing the notion of a multiplicative unitary (in the sense of Baaj-Skandalis), which plays a fundamental role in the theory of locally compact quantum groups, we develop in this paper the notion of a multiplicative partial isometry. The axioms include the pentagon equation, but more is needed. Under suitable conditions (such as the "manageability"), it is possible to construct from it a pair of C*-algebras having the structure of a C*-algebraic quantum groupoid of separable type.