论文标题

学习通过单个多模纤维启用了密集的太空划分多路复用

Learning Enabled Dense Space-division Multiplexing through a Single Multimode Fibre

论文作者

Fan, Pengfei, Ruddlesden, Michael, Wang, Yufei, Zhao, Luming, Lu, Chao, Su, Lei

论文摘要

太空划分多路复用是光纤通信中的一项有前途的技术,可提高单个光纤的传输能力。但是,可以多路复用的通道数受到通道之间的串扰的限制,而多路复用仅应用于几种模式或多核纤维。在这里,我们建议使用标准多模纤维(MMF)深度学习的高空间密度通道多路复用框架。我们提出了概念验证实验系统,该系统由单个光源,单个数字微米介质调制器,单个检测摄像头和深层卷积神经网络(CNN)组成,可与多达400个通道的同时数据传输,这些数据可准确地传输到几乎是100%超过100%的MMF,多达100%的MMF,而不是不同类型的MMF。提出了一种新型可扩展的半监督学习模型,以实时使CNN适应时间变化的MMF信息通道,以克服环境变化,例如温度变化和振动,并从数百个通道之间从复杂的串扰中重建输入数据。这种基于深度学习的方法有望最大程度地利用MMFS的空间维度,并打破空间分割多路复用中当前的通道限制,以实现未来的高容量MMF MMF传输数据链接。

Space-division multiplexing is a promising technology in optical fibre communication to improve the transmission capacity of a single optical fibre. However, the number of channels that can be multiplexed is limited by the crosstalks between channels, and the multiplexing is only applied to few-mode or multi-core fibres. Here, we propose a high-spatial-density channel multiplexing framework employing deep learning for standard multimode fibres (MMF). We present a proof-of-concept experimental system, consisting of a single light source, a single digital-micromirror-device modulator, a single detection camera, and a deep convolutional neural network (CNN) to demonstrate up to 400-channel simultaneous data transmission with accuracy close to 100% over MMFs of different types, diameters and lengths. A novel scalable semi-supervised learning model is proposed to adapt the CNN to the time-varying MMF information channels in real-time, to overcome the environmental changes such as temperature variations and vibrations, and to reconstruct the input data from complex crosstalks among hundreds of channels. This deep-learning based approach is promising to maximize the use of the spatial dimension of MMFs, and to break the present number-of-channel limit in space-division multiplexing for future high-capacity MMF transmission data links.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源