论文标题

重新审视的特殊立方体综合体:准米迪概括

Special cube complexes revisited: a quasi-median generalisation

论文作者

Genevois, Anthony

论文摘要

在本文中,我们将Haglund和Wise的特殊立方体复合物理论推广到作用于准米迪亚图的群体。更确切地说,我们在准米迪安图上定义了特殊动作,并且我们表明的是,一个特别作用于准米迪安图的组,具有有限的顶点轨道,必须将其作为虚拟缩回术的缩回到有限的clique-stabilisers的图形产品中。在本文的第二部分中,我们将理论应用于某些组的基本组,称为右角图。

In this article, we generalise Haglund and Wise's theory of special cube complexes to groups acting on quasi-median graphs. More precisely, we define special actions on quasi-median graphs, and we show that a group which acts specially on a quasi-median graph with finitely many orbits of vertices must embed as a virtual retract into a graph product of finite extensions of clique-stabilisers. In the second part of the article, we apply the theory to fundamental groups of some graphs of groups called right-angled graphs of groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源