论文标题

从合作伙伴到人群的概括含义:分层推论支持网络上的惯例形成

Generalizing meanings from partners to populations: Hierarchical inference supports convention formation on networks

论文作者

Hawkins, Robert D., Goodman, Noah D., Goldberg, Adele E., Griffiths, Thomas L.

论文摘要

语言惯例的一个关键特性是,他们掌握了整个演讲者社区,即使我们以前从未见过的人,也可以有效地进行沟通。同时,我们的大部分语言使用都是特定于合作伙伴的:我们知道,根据我们的共同历史,不同的人可能会以不同的方式理解单词。这对公约形成的帐户提出了挑战。代理商如何在保持特定于合作伙伴的知识的同时向社区范围内的期望进行推断飞跃?我们提出了一个分层贝叶斯模型,以解释说话者和听众如何解决这个归纳问题。为了评估模型的预测,我们进行了一个实验,参与者与小社区中的不同合作伙伴进行了扩展的自然语言沟通游戏。我们研究了一些概括的衡量标准,并找到了合作伙伴特异性和社区融合的关键签名,这些特异性和社区融合将我们的模型与替代方案区分开。这些结果表明,合作伙伴特异性不仅与社区范围的惯例的形成兼容,而且在与强大的电感机制结合时可能会促进。

A key property of linguistic conventions is that they hold over an entire community of speakers, allowing us to communicate efficiently even with people we have never met before. At the same time, much of our language use is partner-specific: we know that words may be understood differently by different people based on our shared history. This poses a challenge for accounts of convention formation. Exactly how do agents make the inferential leap to community-wide expectations while maintaining partner-specific knowledge? We propose a hierarchical Bayesian model to explain how speakers and listeners solve this inductive problem. To evaluate our model's predictions, we conducted an experiment where participants played an extended natural-language communication game with different partners in a small community. We examine several measures of generalization and find key signatures of both partner-specificity and community convergence that distinguish our model from alternatives. These results suggest that partner-specificity is not only compatible with the formation of community-wide conventions, but may facilitate it when coupled with a powerful inductive mechanism.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源