论文标题
量子潜力和不确定性关系的平均值
Mean Value of the Quantum Potential and Uncertainty Relations
论文作者
论文摘要
在这项工作中,我们确定了与任意状态的量子潜力的平均值的下限。此外,我们得出了一种普遍的不确定性关系,该关系比罗伯逊·史克尔丁格(Robertson-Schrödinger)不平等强,因此比海森伯格(Heisenberg)的不确定性原理更强。然后,平均值与Momenta操作员协方差的非经典部分相关联。这对Momenta的非经典相关性施加了最低限制,并给出了量子系统的经典和半经典限制的物理表征。然后将主要针对纯状态获得的结果推广,以描述混合状态的密度矩阵。
In this work we determine a lower bound to the mean value of the quantum potential for an arbitrary state. Furthermore, we derive a generalized uncertainty relation that is stronger than the Robertson-Schrödinger inequality and hence also stronger than the Heisenberg uncertainty principle. The mean value is then associated to the nonclassical part of the covariances of the momenta operator. This imposes a minimum bound for the nonclassical correlations of momenta and gives a physical characterization of the classical and semiclassical limits of quantum systems. The results obtained primarily for pure states are then generalized for density matrices describing mixed states.