论文标题

量子潜力和不确定性关系的平均值

Mean Value of the Quantum Potential and Uncertainty Relations

论文作者

Nicacio, F., Falciano, F. T.

论文摘要

在这项工作中,我们确定了与任意状态的量子潜力的平均值的下限。此外,我们得出了一种普遍的不确定性关系,该关系比罗伯逊·史克尔丁格(Robertson-Schrödinger)不平等强,因此比海森伯格(Heisenberg)的不确定性原理更强。然后,平均值与Momenta操作员协方差的非经典部分相关联。这对Momenta的非经典相关性施加了最低限制,并给出了量子系统的经典和半经典限制的物理表征。然后将主要针对纯状态获得的结果推广,以描述混合状态的密度矩阵。

In this work we determine a lower bound to the mean value of the quantum potential for an arbitrary state. Furthermore, we derive a generalized uncertainty relation that is stronger than the Robertson-Schrödinger inequality and hence also stronger than the Heisenberg uncertainty principle. The mean value is then associated to the nonclassical part of the covariances of the momenta operator. This imposes a minimum bound for the nonclassical correlations of momenta and gives a physical characterization of the classical and semiclassical limits of quantum systems. The results obtained primarily for pure states are then generalized for density matrices describing mixed states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源