论文标题
延迟线性微分方程的解决方案估计值
Solution estimates for linear differential equations with delay
论文作者
论文摘要
在本文中,我们给出了明确的指数估计$ \ displayStyle | x(t)| \ leq m e^{-γ(t -t_0)} $,其中$ t \ geq t_0 $,$ m> 0 $,用于线性量表延迟差异方程$ $ $ $ \ dot $ \ dot \ dot \ d}(x}(x}+sum_)的解决方案b_k(t)x(h_k(t))= f(t),~~ t \ geq t_0,〜x(t)= ϕ(t),〜t \ t \ leq t_0。 $$我们考虑两种不同的情况:$γ> 0 $(对应于指数稳定性),而当解决方案通常增长时,$γ<0 $的情况为$γ<0 $。 在第一种情况下,加上指数估计,我们还获得了指数稳定性测试,在第二种情况下,我们获得了溶液增长的估计。在这里,系数和延迟都是可测量的,不一定是连续的。
In this paper, we give explicit exponential estimates $\displaystyle |x(t)|\leq M e^{ -γ(t-t_0) }$, where $t\geq t_0$, $M>0$, for solutions of a linear scalar delay differential equation $$ \dot{x}(t)+\sum_{k=1}^m b_k(t)x(h_k(t))=f(t),~~ t\geq t_0,~ x(t)=ϕ(t),~t\leq t_0. $$ We consider two different cases: when $γ>0$ (corresponding to exponential stability) and the case of $γ<0$ when the solution is, generally, growing. In the first case, together with the exponential estimate, we also obtain an exponential stability test, in the second case we get estimation for solution growth. Here both the coefficients and the delays are measurable, not necessarily continuous.