论文标题
运算符 - 代数重新归一化和小波
Operator-algebraic renormalization and wavelets
论文作者
论文摘要
我们将使用小波理论报告一个严格的操作员 - 代数重新归一化组方案,并构建无效场作为汉密尔顿晶格系统的缩放限制。重新归一化组步骤由缩放方程式确定,识别晶格可观察的,其连续性场被紧凑的小波涂抹。因果关系来自Lieb-Robinson的谐波晶格系统。该方案与多尺度的纠缠重新归一化ANSATZ相关,并增加了量子系统的半固定限制。
We report on a rigorous operator-algebraic renormalization group scheme and construct the continuum free field as the scaling limit of Hamiltonian lattice systems using wavelet theory. A renormalization group step is determined by the scaling equation identifying lattice observables with the continuum field smeared by compactly supported wavelets. Causality follows from Lieb-Robinson bounds for harmonic lattice systems. The scheme is related with the multi-scale entanglement renormalization ansatz and augments the semi-continuum limit of quantum systems.