论文标题
总体化结构保存基于框架的图像脱毛的预处理
Generalized Structure Preserving Preconditioners for Frame-Based Image Deblurring
论文作者
论文摘要
我们对快速稳定的迭代正则化方法感兴趣,以使空间不变的模糊存在图像过度的问题。相关的系数矩阵具有块Toeplitz toeplitz块(BTTB),例如结构,以及较小的等级校正,具体取决于成像模型上施加的边界条件。在文献中,已经提出了几种策略,以定义涉及此类线性系统的迭代正则化方法的适当预处理。通常,选择预处理是具有循环块(BCCB)矩阵的块循环器,因为它可以有效利用快速傅立叶变换(FFT)进行任何计算,包括(伪)反转。然而,对于条件不足的问题,众所周知,BCCB预处理无法提供对特征值的强烈聚类。此外,为了获得有效的预处理,保持系数矩阵的结构至关重要。 另一方面,最近已成功地将阈值迭代方法应用于图像脱毛问题,从而利用了适当的小波域中图像的稀疏性。在最近的论文结果的推动下,我们将非组织的预处理与修改的线性化Bregman算法(MLBA)和适当的正则化运算符相结合。 几个数值实验显示了我们方法在还原质量方面的性能。
We are interested in fast and stable iterative regularization methods for image deblurring problems with space invariant blur. The associated coefficient matrix has a Block Toeplitz Toeplitz Blocks (BTTB) like structure plus a small rank correction depending on the boundary conditions imposed on the imaging model. In the literature, several strategies have been proposed in the attempt to define proper preconditioner for iterative regularization methods that involve such linear systems. Usually, the preconditioner is chosen to be a Block Circulant with Circulant Blocks (BCCB) matrix because it can be efficiently exploit Fast Fourier Transform (FFT) for any computation, including the (pseudo-)inversion. Nevertheless, for ill-conditioned problems, it is well known that BCCB preconditioners cannot provide a strong clustering of the eigenvalues. Moreover, in order to get an effective preconditioner, it is crucial to preserve the structure of the coefficient matrix. On the other hand, thresholding iterative methods have been recently successfully applied to image deblurring problems, exploiting the sparsity of the image in a proper wavelet domain. Motivated by the results of recent papers, we combine a nonstationary preconditioned iteration with the modified linearized Bregman algorithm (MLBA) and proper regularization operators. Several numerical experiments shows the performances of our methods in terms of quality of the restorations.