论文标题
原子链的光学响应超出了低光强度的极限:线性经典振荡器模型的有效性
Optical response of atom chains beyond the limit of low light intensity: The validity of the linear classical oscillator model
论文作者
论文摘要
受弱相干入射光的原子可以视为耦合的经典线性振荡器,从而支持次化和超级集体集体激发本特征。我们通过求解来自捕获原子链的相干和不连贯散射的量子多体方程来确定此\ emph {线性经典振荡器模型}的有效性极限。我们表明,偏离线性经典振荡器模型的偏差敏感地取决于集体特征模型的共振线宽$ \UPSILON_α$受到光激发的集体特征,其强度为$ \upsilon_α$的强度,其强度是缩放的。然后,线性的经典振荡器模型在次级集体激发的强度较低的情况下变得不准确,而七个原子的示例系统产生了七个原子的示例系统,导致两种情况之间的临界事件光强度差异为30倍。通过单独令人兴奋的本本元素,我们发现这种关键强度具有$ \upsilon_α^{2.5} $缩放,以缩放较窄的共振和更强的相互作用系统,而它接近$ \upsilon_α^3 $缩放,以缩放更广泛的共振和偶极 - 偶极相互作用。 $ \upsilon_α^3 $缩放还对应于半经典结果,在该结果中,原子之间的量子波动已被忽略。我们研究了完全模式匹配的驱动器和常规驱动器的情况,两种情况之间仅在非常次级的模式和FANO共振位置出现的两个情况之间存在显着差异。
Atoms subject to weak coherent incident light can be treated as coupled classical linear oscillators, supporting subradiant and superradiant collective excitation eigenmodes. We identify the limits of validity of this \emph{linear classical oscillator model} at increasing intensities of the drive by solving the quantum many-body master equation for coherent and incoherent scattering from a chain of trapped atoms. We show that deviations from the linear classical oscillator model depend sensitively on the resonance linewidths $\upsilon_α$ of the collective eigenmodes excited by light, with the intensity at which substantial deviation occurs scaling as a powerlaw of $\upsilon_α$. The linear classical oscillator model then becomes inaccurate at much lower intensities for subradiant collective excitations than superradiant ones, with an example system of seven atoms resulting in critical incident light intensities differing by a factor of 30 between the two cases. By individually exciting eigenmodes we find that this critical intensity has a $\upsilon_α^{2.5}$ scaling for narrower resonances and more strongly interacting systems, while it approaches a $\upsilon_α^3$ scaling for broader resonances and when the dipole-dipole interactions are reduced. The $\upsilon_α^3$ scaling also corresponds to the semiclassical result whereby quantum fluctuations between the atoms have been neglected. We study both the case of perfectly mode-matched drives and the case of standing wave drives, with significant differences between the two cases appearing only at very subradiant modes and positions of Fano resonances.