论文标题
准单位时间中原始置换组的正常仪
Normalisers of primitive permutation groups in quasipolynomial time
论文作者
论文摘要
我们表明,给定的子组$ g $和$ h $的生成器,$ \ mathrm {s} _n $,如果$ g $是原始的,则可以在quasipolynomial时间以$ 2^{o(即$ 2^{o log log^3 n)} $计算$ \ mathrm {n} _h(g)$的生成器。以前最著名的界限只是指数级。
We show that given generators for subgroups $G$ and $H$ of $\mathrm{S}_n$, if $G$ is primitive then generators for $\mathrm{N}_H(G)$ may be computed in quasipolynomial time, namely $2^{O(\log^3 n)}$. The previous best known bound was simply exponential.