论文标题

从稀疏采样中快速重建原子级的干eels图像

Fast reconstruction of atomic-scale STEM-EELS images from sparse sampling

论文作者

Monier, Etienne, Oberlin, Thomas, Brun, Nathalie, Li, Xiaoyan, Tencé, Marcel, Dobigeon, Nicolas

论文摘要

本文讨论了部分采样的光谱图像的重建,以加速扫描透射电子显微镜(STEM)中的采集。文献中已经广泛考虑了许多成像方式的图像重建问题,但是只有少数尝试处理的3D数据,例如由STEM电子能量损失光谱(EELS)获取的光谱图像。此外,在显微镜文献中提出的方法中,有些是快速但不准确的,而另一些则提供了准确的重建,但以高计算负担为代价。因此,没有提出的重建方法在准确性和计算复杂性方面达到了我们的期望。在本文中,我们提出了一种适合原子级鳗鱼的快速准确的重建方法。将该方法与流行解决方案(例如Beta过程因子分析(BPFA))进行比较,该方法首次在干eels图像上使用。将基于真实的实验作为合成数据。

This paper discusses the reconstruction of partially sampled spectrum-images to accelerate the acquisition in scanning transmission electron microscopy (STEM). The problem of image reconstruction has been widely considered in the literature for many imaging modalities, but only a few attempts handled 3D data such as spectral images acquired by STEM electron energy loss spectroscopy (EELS). Besides, among the methods proposed in the microscopy literature, some are fast but inaccurate while others provide accurate reconstruction but at the price of a high computation burden. Thus none of the proposed reconstruction methods fulfills our expectations in terms of accuracy and computation complexity. In this paper, we propose a fast and accurate reconstruction method suited for atomic-scale EELS. This method is compared to popular solutions such as beta process factor analysis (BPFA) which is used for the first time on STEM-EELS images. Experiments based on real as synthetic data will be conducted.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源