论文标题

消除飞机上的连接障碍物是fpt

Removing Connected Obstacles in the Plane is FPT

论文作者

Eiben, Eduard, Lokshtanov, Daniel

论文摘要

鉴于飞机上的两个点,一组由封闭曲线定义的障碍物和一个整数$ k $,是否有两个指定点之间有一条路径,最多与障碍物的$ k $相交?这是一个基本且研究充分的问题,在计算几何,图理论,无线计算和运动计划中自然产生。它仍然是$ \ textsf {np} $ - 即使障碍物是非常简单的几何形状(例如,单位长度线段)也很难。在本文中,我们表明该问题是固定参数可处理的($ \ textsf {fpt} $)由$ k $参数化的,该算法在运行时间$ k^{o(k^3)} n^{o(o(k^3)} n^{o(1)} $中。这里$ n $是所有障碍的飞机图中连接的区域。

Given two points in the plane, a set of obstacles defined by closed curves, and an integer $k$, does there exist a path between the two designated points intersecting at most $k$ of the obstacles? This is a fundamental and well-studied problem arising naturally in computational geometry, graph theory, wireless computing, and motion planning. It remains $\textsf{NP}$-hard even when the obstacles are very simple geometric shapes (e.g., unit-length line segments). In this paper, we show that the problem is fixed-parameter tractable ($\textsf{FPT}$) parameterized by $k$, by giving an algorithm with running time $k^{O(k^3)}n^{O(1)}$. Here $n$ is the number connected areas in the plane drawing of all the obstacles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源