论文标题

岩石行星形成期间的硅酸盐熔化和蒸发

Silicate Melting and Vaporization during Rocky Planet Formation

论文作者

Davies, Erik J., Carter, Phil J., Root, Seth, Kraus, Richard G., Spaulding, Dylan K., Stewart, Sarah T., Jacobsen$^{4}$, Stein B.

论文摘要

引起熔化和汽化的碰撞会对行星的热和地球化学演变产生重大影响。但是,在行星形成期间达到的极端条件下,主要矿物质的热力学尚不清楚。我们在Sandia Z机器上获取了新数据,并使用已发布的主要矿物脱矿(mg $ _2 $ sio $ _4 $)来计算主要hugoniot液体的特定熵。我们使用震惊的玻璃铁矿的特定特定熵,以及对震惊的二氧化硅进行修订的熵,以确定从震惊状态到1 bar和三重点减压时熔化或蒸发的关键冲击速度,而三重点与太阳星云的压力相近。我们还证明了初始温度对汽化标准的重要性。将这些结果应用于$ n $ body的陆地行星形成的模拟,我们发现,通过超过速度超过速度的碰撞来处理多达20%至40%的系统质量,这些速度超过了三重点的初期蒸发标准。小体之间的蒸发碰撞是地球形成的重要组成部分。

Collisions that induce melting and vaporization can have a substantial effect on the thermal and geochemical evolution of planets. However, the thermodynamics of major minerals are not well known at the extreme conditions attained during planet formation. We obtained new data at the Sandia Z Machine and use published thermodynamic data for the major mineral forsterite (Mg$_2$SiO$_4$) to calculate the specific entropy in the liquid region of the principal Hugoniot. We use our calculated specific entropy of shocked forsterite, and revised entropies for shocked silica, to determine the critical impact velocities for melting or vaporization upon decompression from the shocked state to 1 bar and the triple points, which are near the pressures of the solar nebula. We also demonstrate the importance of the initial temperature on the criteria for vaporization. Applying these results to $N$-body simulations of terrestrial planet formation, we find that up to 20 to 40% of the total system mass is processed through collisions with velocities that exceed the criteria for incipient vaporization at the triple point. Vaporizing collisions between small bodies are an important component of terrestrial planet formation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源