论文标题

严格的“丰富论证”在微透明视差中

Rigorous "Rich Argument" in Microlensing Parallax

论文作者

Gould, Andrew

论文摘要

我表明,当观察到$(\vecπ_{\ rm e},t _ {\ rm e},θ_ {\ rm e},π_s,\vecμ_s)$都可以很好地测量到微果中的离散性$ \ \ \ \ \ v vec \ v v v v v e \ v v v e \ v v v e \ c。不同解决方案的可能性可以用封闭形式写成$ p_i = k h_i b_i $,其中$ h_i $是具有质量和运动学的质量和运动学$ i $和$ b_i $的星星(势镜头)的数量(势镜头),这是从源自对变色的jacobian正式得出的额外因素,它是正式的。 Jacobian项$ b_i $构成了对``Rich Crignt''的明确评估,即,除了$ H_I $给出的镜头频率降低之外,还有一个额外的几何因素不利于大型Parallax解决方案。这里$ t _ {\ rm e} $是Einstein Timesscale,$θ_ {\ rm e} $是Angular Einstein Radius,而$(π_s,\vecμ_s)$是微胶片来源的(parallax,适当运动)。我还讨论了该分析表达如何在测得可观察到的有限误差的情况下降解。

I show that when the observables $(\vec π_{\rm E},t_{\rm E},θ_{\rm E},π_s,\vec μ_s)$ are well measured up to a discrete degeneracy in the microlensing parallax vector $\vec π_{\rm E}$, the relative likelihood of the different solutions can be written in closed form $P_i = K H_i B_i$, where $H_i$ is the number of stars (potential lenses) having the mass and kinematics of the inferred parameters of solution $i$ and $B_i$ is an additional factor that is formally derived from the Jacobian of the transformation from Galactic to microlensing parameters. The Jacobian term $B_i$ constitutes an explicit evaluation of the ``Rich Argument'', i.e., that there is an extra geometric factor disfavoring large-parallax solutions in addition to the reduced frequency of lenses given by $H_i$. Here $t_{\rm E}$ is the Einstein timescale, $θ_{\rm E}$ is the angular Einstein radius, and $(π_s,\vec μ_s)$ are the (parallax, proper motion) of the microlensed source. I also discuss how this analytic expression degrades in the presence of finite errors in the measured observables.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源