论文标题

在序列空间上具有较小规范的单型多线性形式上

On unimodular multilinear forms with small norms on sequence spaces

论文作者

Pellegrino, Daniel, Serrano-Rodríguez, Diana, Silva, Janiely

论文摘要

Kahane-salem-- Zygmund不平等是一个概率结果,可确保存在带有条目的特殊矩阵$ 1 $和-1 $生成un-dimodular $ m $ m $ - linear forms $ a_ {m,n}:\ ell _ elly_ \ cdots \ times \ ell_ {p_ {m}}^{n} \ longrightArrow \ Mathbb {r} $(或$ \ Mathbb {C} $)具有相对较小的规范。 $ \ \ left \ left \ {p_ {1},...,p_ {m} \ right \} \ subset \ lbrack2,\ lbrack2,\ infty] $,当$ \ {p_ {1},... \ subset \ lbrack1,2)$是众所周知的,在本文中,我们获得了剩余情况的最佳渐近估计值:$ \ left \ {p_ {1},...,p_ {m} \ right \} $ intercepts $ intercepts $ [2,\ infty] $ [2,\ infty] $和$ [1,2 $ [1,2)$。特别是我们证明,阿尔伯克基(Albuquerque)和雷津德(Rezende)提出的猜想是错误的,并且使用一种特殊类型的矩阵,可追溯到toeplitz的作品,我们还回答了同一作者提出的问题。

The Kahane--Salem--Zygmund inequality is a probabilistic result that guarantees the existence of special matrices with entries $1$ and $-1$ generating unimodular $m$-linear forms $A_{m,n}:\ell_{p_{1}}^{n}\times \cdots\times\ell_{p_{m}}^{n}\longrightarrow\mathbb{R}$ (or $\mathbb{C}$) with relatively small norms. The optimal asymptotic estimates for the smallest possible norms of $A_{m,n}$ when $\left\{ p_{1},...,p_{m}\right\} \subset\lbrack2,\infty]$ and when $\left\{ p_{1},...,p_{m}\right\} \subset\lbrack1,2)$ are well-known and in this paper we obtain the optimal asymptotic estimates for the remaining case: $\left\{ p_{1},...,p_{m}\right\} $ intercepts both $[2,\infty]$ and $[1,2)$. In particular we prove that a conjecture posed by Albuquerque and Rezende is false and, using a special type of matrices that dates back to the works of Toeplitz, we also answer a problem posed by the same authors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源