论文标题

通过多关系图卷积网络进行准确的车辆行为分类

Towards Accurate Vehicle Behaviour Classification With Multi-Relational Graph Convolutional Networks

论文作者

Mylavarapu, Sravan, Sandhu, Mahtab, Vijayan, Priyesh, Krishna, K Madhava, Ravindran, Balaraman, Namboodiri, Anoop

论文摘要

从传感器数据的时间序列中了解道路车辆行为正在流行。在本文中,我们提出了一条管道,以理解单眼图像序列或视频的车辆行为。单眼序列以及场景语义,光流和对象标签用于获取有关场景中感兴趣的对象(车辆)和其他对象(语义上连续的位置集)的空间信息。此空间信息由多关系图卷积网络(MR-GCN)编码,并且此类编码的时间顺序被馈送到重复网络以标记车辆行为。拟议的框架可以将各种车辆行为分类为多样化的数据集中的高保真度,其中包括欧洲,中国和印度的公路场景。该框架还提供了模型在跨数据集的无缝传输,而无需重新注释,再培训甚至微调。我们在基线时空分类器上显示了比较性能增长,并详细说明了各种消融,以展示框架的功效。

Understanding on-road vehicle behaviour from a temporal sequence of sensor data is gaining in popularity. In this paper, we propose a pipeline for understanding vehicle behaviour from a monocular image sequence or video. A monocular sequence along with scene semantics, optical flow and object labels are used to get spatial information about the object (vehicle) of interest and other objects (semantically contiguous set of locations) in the scene. This spatial information is encoded by a Multi-Relational Graph Convolutional Network (MR-GCN), and a temporal sequence of such encodings is fed to a recurrent network to label vehicle behaviours. The proposed framework can classify a variety of vehicle behaviours to high fidelity on datasets that are diverse and include European, Chinese and Indian on-road scenes. The framework also provides for seamless transfer of models across datasets without entailing re-annotation, retraining and even fine-tuning. We show comparative performance gain over baseline Spatio-temporal classifiers and detail a variety of ablations to showcase the efficacy of the framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源