论文标题

分析窗口和特征选择对使用EMG信号分类的分类的影响

Effect of Analysis Window and Feature Selection on Classification of Hand Movements Using EMG Signal

论文作者

Ullah, Asad, Ali, Sarwan, Khan, Imdadullah, Khan, Muhammad Asad, Faizullah, Safiullah

论文摘要

肌电图(EMG)信号已成功用于驱动单个或双重自由度的假肢。该原理通过使用EMG信号的幅度来决定一个或两个简单的运动之间。与在机械,电子和机器人技术结束时所取得的现代进步相比,这种方法表现不佳,并且缺乏直觉。最近,基于模式识别(PR)的肌电控制的研究显示了机器学习分类器的帮助。使用称为EMGPR的方法,将EMG信号分为分析窗口,并为每个窗口提取功能。然后将这些功能馈送到机器学习分类器作为输入。通过提供多个班级运动和直观的控制,该方法有可能为截肢主体提供动力以执行日常生活。在本文中,我们使用时间域特征研究了分析窗口和特征选择对不同手和腕部运动的分类精度的效果。我们表明,有效的数据预处理和最佳特征选择有助于提高手部运动的分类精度。我们使用公开可用的手和手腕手势数据集,$ 40 $完整的主题进行实验。使用不同分类算法计算的结果表明,所提出的预处理和特征选择优于基线,并达到$ 98 \%$ $分类的精度。

Electromyography (EMG) signals have been successfully employed for driving prosthetic limbs of a single or double degree of freedom. This principle works by using the amplitude of the EMG signals to decide between one or two simpler movements. This method underperforms as compare to the contemporary advances done at the mechanical, electronics, and robotics end, and it lacks intuition. Recently, research on myoelectric control based on pattern recognition (PR) shows promising results with the aid of machine learning classifiers. Using the approach termed as, EMG-PR, EMG signals are divided into analysis windows, and features are extracted for each window. These features are then fed to the machine learning classifiers as input. By offering multiple class movements and intuitive control, this method has the potential to power an amputated subject to perform everyday life movements. In this paper, we investigate the effect of the analysis window and feature selection on classification accuracy of different hand and wrist movements using time-domain features. We show that effective data preprocessing and optimum feature selection helps to improve the classification accuracy of hand movements. We use publicly available hand and wrist gesture dataset of $40$ intact subjects for experimentation. Results computed using different classification algorithms show that the proposed preprocessing and features selection outperforms the baseline and achieve up to $98\%$ classification accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源