论文标题
带有伪甲骨的基于图形的新型轨迹预测变量
A Novel Graph based Trajectory Predictor with Pseudo Oracle
论文作者
论文摘要
在动态场景中的行人轨迹预测仍然是许多应用程序(例如自动驾驶汽车和具有社会意识的机器人)的挑战和关键问题。挑战集中在捕捉行人的运动模式和社交互动以及处理未来的不确定性上。最近的研究着重于通过复发性神经网络对行人的运动模式进行建模,以基于基于图或基于图的方法捕获社交互动,并通过使用随机高斯噪声作为潜在变量来处理未来的不确定性。但是,他们不会整合可能改善预测性能的特定避免障碍经验(OAE)。例如,行人的未来轨迹总是受到前面其他人的影响。在这里,我们提出了GTPPO(基于图的轨迹预测器,具有伪甲骨文),这是一种基于编码器核编码器的方法,该方法以行人的未来行为为条件。行人的运动模式是用长期的短期记忆单元编码的,该单元引入了暂时的关注,以突出特定的时间步骤。它们的相互作用是通过基于图的注意机制捕获的,该机制将OAE吸引到图形注意力的数据驱动学习过程中。未来的不确定性是通过产生具有信息潜在变量的多模式输出来处理的。这种变量是由一种新型的伪甲骨文预测变量产生的,该预测变量最小化了历史和地面轨迹之间的知识差距。最后,对GTPPO进行了ETH,UCY和Stanford无人机数据集的评估,结果证明了最先进的性能。此外,定性评估显示了未来处理突然运动变化的成功案例。这样的发现表明GTPPO可以窥视未来。
Pedestrian trajectory prediction in dynamic scenes remains a challenging and critical problem in numerous applications, such as self-driving cars and socially aware robots. Challenges concentrate on capturing pedestrians' motion patterns and social interactions, as well as handling the future uncertainties. Recent studies focus on modeling pedestrians' motion patterns with recurrent neural networks, capturing social interactions with pooling-based or graph-based methods, and handling future uncertainties by using random Gaussian noise as the latent variable. However, they do not integrate specific obstacle avoidance experience (OAE) that may improve prediction performance. For example, pedestrians' future trajectories are always influenced by others in front. Here we propose GTPPO (Graph-based Trajectory Predictor with Pseudo Oracle), an encoder-decoder-based method conditioned on pedestrians' future behaviors. Pedestrians' motion patterns are encoded with a long short-term memory unit, which introduces the temporal attention to highlight specific time steps. Their interactions are captured by a graph-based attention mechanism, which draws OAE into the data-driven learning process of graph attention. Future uncertainties are handled by generating multi-modal outputs with an informative latent variable. Such a variable is generated by a novel pseudo oracle predictor, which minimizes the knowledge gap between historical and ground-truth trajectories. Finally, the GTPPO is evaluated on ETH, UCY and Stanford Drone datasets, and the results demonstrate state-of-the-art performance. Besides, the qualitative evaluations show successful cases of handling sudden motion changes in the future. Such findings indicate that GTPPO can peek into the future.