论文标题
数学征服者,unguru极性和历史任务
Mathematical conquerors, Unguru polarity, and the task of history
论文作者
论文摘要
我们将几种方法与Blasjo,Fraser-Schroter,Fried等最近提出的数学历史进行了比较。我们认为,来自数学和历史的工具对于该学科的有意义的历史至关重要。 迈克尔·弗里德(Michael Fried)在几何代数的概念上扩展了关于几何代数的概念的争议,提出了对“特权观察者”和“数学征服者”的“特权观察者”和皮埃尔·德·费马特(Pierre de Fermat)的案子。我们分析了弗里德(Fried)在历史学家和数学家历史之间所谓的极性的版本。我们确定了一些弗里德史学意识形态的公理,并提出了一个思想实验来评估其相关性。 Unguru和他的门徒Corry,Fried和Rowe将Freudental,Van der Waerden和Weil描述为柏拉图主义者,但没有提供任何证据。我们提供相反的证据。我们分析了各种史学方法如何在数学分析的开拓者的研究中发挥作用,包括Fermat,Leibniz,Euler和Cauchy。
We compare several approaches to the history of mathematics recently proposed by Blasjo, Fraser--Schroter, Fried, and others. We argue that tools from both mathematics and history are essential for a meaningful history of the discipline. In an extension of the Unguru-Weil controversy over the concept of geometric algebra, Michael Fried presents a case against both Andre Weil the "privileged observer" and Pierre de Fermat the "mathematical conqueror." We analyze Fried's version of Unguru's alleged polarity between a historian's and a mathematician's history. We identify some axioms of Friedian historiographic ideology, and propose a thought experiment to gauge its pertinence. Unguru and his disciples Corry, Fried, and Rowe have described Freudenthal, van der Waerden, and Weil as Platonists but provided no evidence; we provide evidence to the contrary. We analyze how the various historiographic approaches play themselves out in the study of the pioneers of mathematical analysis including Fermat, Leibniz, Euler, and Cauchy.