论文标题
起源:盲目检测到缪斯数据库中微弱的排放线星系
ORIGIN: Blind detection of faint emission line galaxies in MUSE datacubes
论文作者
论文摘要
Muse Intemall Field光谱仪的主要科学案例之一是在高红移中检测Lyman-Alpha发射器。正在进行的和计划中的深层田地观察将允许其中一个大量来源样本。在Muse DataCubes中对微弱发射器进行盲目检测的有效工具是这种努力的先决条件。 存在几种线检测算法,但是它们在最深的缪斯暴露期间的表现很难量化,特别是在其实际的错误检测率或纯度方面。 {这项工作的目的是设计和验证}一种算法,该算法有效地检测到微弱的空间光谱发射特征,同时允许在数据立方体上具有稳定的虚假检测率,并同时提供对纯度的自动估计。 提供地面真相的模拟数据立方体的结果表明,该方法在纯度和完整性方面达到了目标。当应用于哈勃超深田地的30小时深曝光Muse Datacube时,该算法允许确认检测133个中间红移星系和248个Lyman Alpha Emitters,其中包括86个没有HST的源。 该算法在检测能力和可靠性方面实现了其目标。因此,它是作为Python软件包实现的,其代码和文档可在Github和ReadThedocs上找到。
One of the major science cases of the MUSE integral field spectrograph is the detection of Lyman-alpha emitters at high redshifts. The on-going and planned deep fields observations will allow for one large sample of these sources. An efficient tool to perform blind detection of faint emitters in MUSE datacubes is a prerequisite of such an endeavor. Several line detection algorithms exist but their performance during the deepest MUSE exposures is hard to quantify, in particular with respect to their actual false detection rate, or purity. {The aim of this work is to design and validate} an algorithm that efficiently detects faint spatial-spectral emission signatures, while allowing for a stable false detection rate over the data cube and providing in the same time an automated and reliable estimation of the purity. Results on simulated data cubes providing ground truth show that the method reaches its aims in terms of purity and completeness. When applied to the deep 30-hour exposure MUSE datacube in the Hubble Ultra Deep Field, the algorithms allows for the confirmed detection of 133 intermediate redshifts galaxies and 248 Lyman Alpha Emitters, including 86 sources with no HST counterpart. The algorithm fulfills its aims in terms of detection power and reliability. It is consequently implemented as a Python package whose code and documentation are available on GitHub and readthedocs.