论文标题

可扩展的捆绑通过致密产品嵌入

Scalable bundling via dense product embeddings

论文作者

Kumar, Madhav, Eckles, Dean, Aral, Sinan

论文摘要

Bundling是折扣价共同出售两种或多种产品的实践,是行业中广泛使用的策略,也是学术界的概念。从历史上看,重点一直放在垄断公司的背景下的理论研究上,并假定了产品关系,例如用法中的互补性。我们开发了一种新的机器学习驱动方法,用于在大规模的跨类别零售环境中设计捆绑包。我们利用从ClickStream数据创建的历史购买和考虑集,以生成称为嵌入式产品的产品的密集连续表示。然后,我们将最小的结构放在这些嵌入式上,并为产品之间的互补性和替代性提供启发式方法。随后,我们使用启发式方法为每种产品创建多个捆绑包,并使用大型零售商的现场实验来测试其性能。我们使用层次模型将实验的结果与产品嵌入结合在一起,该模型将其映射到其购买的可能性,如增加车速率。我们发现,基于嵌入的启发式方法是捆绑成功的有力预测指标,跨产品类别的强大预测指标,并且可以很好地推广到零售商的整个分类。

Bundling, the practice of jointly selling two or more products at a discount, is a widely used strategy in industry and a well examined concept in academia. Historically, the focus has been on theoretical studies in the context of monopolistic firms and assumed product relationships, e.g., complementarity in usage. We develop a new machine-learning-driven methodology for designing bundles in a large-scale, cross-category retail setting. We leverage historical purchases and consideration sets created from clickstream data to generate dense continuous representations of products called embeddings. We then put minimal structure on these embeddings and develop heuristics for complementarity and substitutability among products. Subsequently, we use the heuristics to create multiple bundles for each product and test their performance using a field experiment with a large retailer. We combine the results from the experiment with product embeddings using a hierarchical model that maps bundle features to their purchase likelihood, as measured by the add-to-cart rate. We find that our embeddings-based heuristics are strong predictors of bundle success, robust across product categories, and generalize well to the retailer's entire assortment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源